

Economic Observations on the Renaissance of Compulsory Licensing

"Is Your Intellectual Property At Risk From The Government?"

> Jonathan D. Putnam CRA International

> > April 17, 2009

Price and quantity "access restrictions"

- Traditional model: quantity restriction
 - Patent excludes others from making / using / selling
- "Lack of access" = failure to make or use the invention domestically ("failure to work")
 - Quantity supplied = 0
 - Cured by importing / selling (Paris Convention Art. 5), though patent grant does not convey this affirmative right
- Domestic political objective: transfer production know-how and revenue to domestic firm(s)

Price and quantity "access restrictions"

New model: price restriction

- "Lack of access" = price is "too high"
- Quantity supplied > 0
- Antitrust analogy: when does high price = refusal to deal?

Traditional model

- Efficiency objective: reduce market price distortions (tariffs / duties)
- Political objective: avoid disfavoring domestic firms ("dumping")

Importer's production cost benchmarks "the competitive level"

New model

- ▲ The market price itself is "too high"
- ▲ Production cost ≠ benchmark (does not cover R&D)

Domestic firms cannot compete

Doha permits foreign firms to supply domestic mkt

The new "benchmark"

- Price offered by the lowest-cost alternative importer "Dumping" might not be a low enough price
 - "Bidding against the pirate"

Changed political dynamics

Traditional objective

- Importing government seeks revenue by setting tariff on imported good
- "High prices" not necessarily bad (for gov't)

New objective

- Importing government seeks to minimize expenditure by reducing the price of the imported good
- When government must pay for the input, it becomes a price-sensitive consumer

Price discrimination

Traditional model

- Commodity markets
 - + Resale rights
 - = Law of one price

New model

- Differentiated products
 - + No resale (under usual IP laws)
 - = Price discrimination (different across jurisdictions)

Solution and problem

Solution

- By charging different prices in different markets, a seller can simultaneously
 - recover the cost of its R&D
 - provide "access" to poor consumers at low prices

Problem

- "The poor" can't be permitted to resell to "the rich"
- Seller has reveals to "the rich" a lower price that still earns a profit
 - A new benchmark
 - "MFN" pressure to reduce prices

Incentives Ex ante vs. ex post compulsion

Traditional incentive problem: ex post compulsion

- Society seeks a windfall (one-time) gain by transferring surplus of inventions that already exist
 - Example: extraordinary public health emergency (HIV / AIDS)
- Time-inconsistency: the policy to which society committed ex ante is not enforced ex post
- Breach of promise to reward past invention ("once burned") reduces future investment ("twice shy")

Two pro bono compulsion scenarios

Ex post compulsion

Firm requires 1000 hours this year on unanticipated pro bono project

Income is temporarily reduced, but long-run investment is not

Ex ante compulsion

- Firm requires 1000 pro bono hours every year
 - Income is permanently reduced, as is incentive to invest in clients

Incentives Ex ante vs. ex post compulsion

New incentive problem: ex ante compulsion
A Build into the patent system the expectation of compulsory licenses

Case study: USA before the Bayh-Dole Act

- Federal government retained title to federally funded inventions at universities and federal labs
- Universities / labs could not grant exclusive licenses
 - Unable to provide adequate ex ante incentives for development
- Results
 - ex ante compulsion causes inventions to languish in labs
 - few university inventions

What is "adequate remuneration"?

Example 1

- Firm spends \$100 in period 1, earns \$250 in period 2
 - Return = (250 100) / 100 = 150% return
 - Much greater than cost of capital (say 25%)

Example 2

- Firms A and B each spend \$100 in period 1
- ▲ Winner gets patent in period 2 (\$250)
 - Return = 0.5 * (250 100) / 100 + 0.5 * (- 100 / 100) = 25%
 - Breakeven

